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Abstract: A restricted minus dominating function on a graph G = (V,E) is a
function f : V → {−1, 0, 1} such that f(N [v]) ≥ 0 for every vertex v ∈ V and
a vertex assigned 0 is adjacent to at least one vertex assigned 1. The restricted
minus domination number γ−r (G) = min{w(f) : f is restricted minus dominating
function}. In this paper, we initiate the study of γ−r (G) and its relationship with
sign and minus domination are investigated. Many of the known bounds of γ−r (G)
are immediate consequence of our results.

Keywords and Phrases: Graph, domination number, minus domination number,
restricted minus domination.

2010 Mathematics Subject Classification: 05C69, 05C70.

1. Introduction
All graphs considered in this paper are finite, simple, and undirected. For a

general reference on graph theory, the reader is directed to [8]. Let G be a graph
with vertex set V (G) and edge set E(G). Let n = |V | and m = |E| denote
the number of vertices and edges of a graph G, respectively. For any vertex v
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of G, let N(v) and N [v] denote its open and closed neighborhoods respectively.
α0(G)(α1(G)), is the minimum number of vertices (edges) in a vertex (edge) cover
of G. β0(G)(β1(G)), is the minimum number of vertices (edges) in a maximal
independent set of vertex (edge) of G. Let deg(v) be the degree of a vertex v in G,
4(G) and δ(G) be maximum and minimum degree of vertices of G, respectively.
The complement Gc of a graph G is the graph having the same set of vertices as G
denoted by V c and in which two vertices are adjacent, if and only if they are not
adjacent in G. A tree T is an acyclic connected graph.

A dominating set D ⊆ V for a graph G is such that each v ∈ V is either in
D or adjacent to a vertex of D. The domination number γ(G) is the minimum
cardinality of a dominating set of G. For complete review on domination and its
related parameters, refer [1], [9] and [10].

For any real valued function f : V → R the weight of f is denoted and defined
as w(f) =

∑
v∈V f(v).

A sign dominating function (SDF) of a graph G is a function f : V → {−1, 1}
such that f(N [v]) ≥ 1 for all v ∈ V . The sign domination number of a graph G
is γs(G) = min{w(f) : f is sign dominating function}. For more details on sign
domination, we refer [3] and [14].

A minus dominating function (MDF) of a graph G is a function g : V →
{−1, 0, 1} such that g(N [v]) ≥ 1 for all v ∈ V . The minus domination number of a
graph G is γ−(G) = min{w(g) : g is minus dominating function}. For more details
on minus domination, we refer [2], [5], [7], [11], [12] and [13].

A restricted minus dominating function (RMDF) on a graph G is a function f :
V → {−1, 0, 1} such that f(N [v]) ≥ 0 for every vertex v ∈ V and a vertex assigned
0 is adjacent to at least one vertex assigned 1. The restricted minus domination
number γ−r (G) = min{w(f) : f is restricted minus dominating function}. Let |V−1|
, |V0| and |V1| denote number of vertices assigned −1, 0 and 1 respectively.

2. Existing Result
Theorem 2.1. [4] For any tree T, γ−(T ) ≥ 1 with equality if and only if T ∼=
K1,n−1.

Theorem 2.2. [6] Let G be a graph with n vertices. If γs(G) = 0, then n ≥ 6.

Theorem 2.3. [6] For any graph G, γs(G) = n if any only if every non isolated
vertex is either an endvertex or adjacent to an endvertex.

3. Results

We start with the couple of observations, which we use in sequel.

Observation 3.1.A vertex which is assigned −1 is always adjacent to at least one
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vertex assigned 1.
Proof. Since weight of every vertex of a graph G should not be negative it implies
every vertex v ∈ V which is assigned −1 should be adjacent to at least one vertex
assigned 1 such that f(N [v]) ≥ 0.

Observation 3.2. By the definitions of αo(G), α1(G), βo(G) and β1(G), Clearly,
γ−r (G) < min{αo(G), α1(G), βo(G), β1(G)}.
Theorem 3.1. For any path Pn with n ≥ 1 and Cycle Cn with n ≥ 3 vertices,

γ−r (Pn) = γ−r (Cn) =

{
1 if n=3k+1,

0 otherwise,

where k is a positive integer.
Proof. The result can be easily checked for n = 1 and 2. We shall prove the result
for n ≥ 3 vertices. For any positive integer k, if there are 3k-vertices, then −1,
1, 0 is assigned k-times. Hence γ−r (G) = 0. If there are (3k + 1)-vertices, then
as usual 3k-vertices are assigned −1, 1, 0 in order. Since the last vertex among
3k-vertices is assigned 0 and (3k + 1)th vertex say v can neither be assigned 0 as
it will not be adjacent to 1 nor −1 as f(N [v]) = −1. Hence it should be assigned
1. For such assignment γ−r (G) = 1. If there are (3k + 2)-vertices, then −1, 1, 0
are assigned to 3k-vertices in order. (3k + 1)th vertex is assigned 1 and (3k + 2)nd

vertex can be assigned either 0 or −1. Since the restricted minus domination
number of G is minimum of such assignments, we assign −1 to the last vertex.
Hence γ−r (G) = |V1| − |V−1| = 0.

Theorem 3.2. For any complete bipartite graph Kp,q with bipartitions |P1| = p
and |P2| = q,

γ−r (Kp,q) = 1.

Proof. Let f : V → {−1, 0, 1} be a restricted minus dominating function.
Case 1. If the number of vertices assigned 1 is equal to number of vertices assigned
−1, then for any vertex v ∈ V−1, f(N [v]) < 0.
Case 2. If the number of vertices assigned 1 is less than the number of vertices
assigned −1 then there is at least one vertex v ∈ V such that f(N [v]) < 0.

From the above two cases γ−r (Kp,q) > 0 and |V1| > |V−1|.
If |V1| = |V−1| + 1 then f(N [v]) > 0 for all v ∈ V . Hence γ−r (Kp,q) = 1. Thus

γ−r (G) = 1.
To prove our next result, we make use of the following definition:
A graph G is outerplanar if it has a crossing-free embedding in the plane such

that all vertices are on the same face.
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Theorem 3.3. For any positive integer k, there exist an outerplanar graph G with
γ−r (Gk) ≤ −k.
Proof. Consider the outerplanar graph Gk which can be constructed as in Figure
1. Then there are (3k + 3)-vertices out of which (2k + 2) vertices are of degree 1.
By assigning −1 to 2k vertices of degree 1, 1 to k vertices of degree 5 and 0 to
remaining vertices produces RMDF f of Gk of weight k − 2k = −k as illustrated.
This implies that the restricted minus domination number γ−r (G) ≤ −k.

Figure-1: An outerplanar graph Gk with γ−r (Gk) ≤ −k

Theorem 3.4. For any connected graph G, γ−r (G) = 0 if and only if |V1| = |V−1|.
Proof. As vertices assigned 0 is adjacent to at least one vertex assigned 1, implies
that V1 dominates vertices of V0. Hence γ−r (G) = |V1|−|V−1|. Suppose |V1| = |V−1|.
This implies that γ−r (G) = 0. On the other hand, if γ−r (G) = 0, then |V1|−|V−1| = 0.

Theorem 3.5. Let G be a nontrivial graph with 4(G) = n− 1. Then

(i) γ−r (G) = 0.

(ii) γ−r (G) ≤ γ−r (Gc).

Proof. Let G be a nontrivial graph with n-vertices.
(i) Let v be a vertex of degree n − 1. If we assign 1 to vertex v, assign −1 to
a vertex adjacent to v and remaining (n − 2)-vertices are assigned 0, then such
an assignment satisfies both the conditions RMDF. Hence γ−r (G) = 0. (ii) If G
is a graph with 4(G) = n − 1, then by (i), γ−r (G) = 0. Also, the graph Gc is a
disconnected graph, this implies that γ−r (G) ≤ γ−r (Gc).
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Theorem 3.6. For any connected graph G,

γ−r (G) ≤ γ(G).

Proof. Let f : V → {0, 1} be a dominating function and g : V → {−1, 0, 1} be
RMDF on a graph G. Then f(N [v]) ≥ 1 and g(N [v]) ≥ 0 for every v ∈ V . As
γ(G) ≥ 1 and due to the fact of the Theorem 3.3, the result follows.

Theorem 3.7. For any nontrivial graph G, γ−r (G) ≤ n − ∆(G). Further, the
bound is attained if the graph G is totally disconnected.
Proof. Let G be a graph with n-vertices. Then, we consider the following cases:
Case 1. If ∆(G) = 0, then G ∼= Kc

n and n−∆(G) = n. We have γ−r (G) = n.
Case 2. If ∆(G) = 1, then G ∼= K2 and n−∆(G) = 1. Here, one vertex is assigned
1 and other vertex is assigned −1. Then γ−r (G) = 0.
Case 3. If ∆(G) = n− 1, then n−∆(G) = 1. Then by Theorem 3.5, γ−r (G) = 0.
Case 4. If ∆(G) = k other than above considerations, then n−∆(G) = n−k > 1.
We have γ−r (G) < n− k.

Hence, from all the above cases the result is proven.

Theorem 3.8. For any tree T ,

γ−r (T ) ≤ γ−(T ).

Proof. Let T be a tree. Then by Theorem 2.1, γ−(T ) ≥ 1 and by Theorem 3.3,
we have γ−r (T ) ≤ γ−(T ).

There is no good relation between γ−r (G) and γ−(G) except for tree. For illus-
tration, consider the graphs G1, G2 and G3.

Figure-2 Graphs with γ−(G1) and γ−r (G1).
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Figure-3 Graphs with γ−(G2) and γ−r (G2).

Figure-4 Graphs with γ−r (G3) and γ−(G3).

In Figure 2, we have γ−(G1) < γ−r (G1).
In Figure 3, we have γ−r (G2) = γ−(G2).
In Figure.4, we have γ−(G3) > γ−r (G3).

Theorem 3.9. Let G be a graph with n ≥ 1 vertices. Then γs(G) = γ−r (G) = n if
and only if G ∼= Kc

n.
Proof. Let G ∼= Kc

n. Then, under RMDF and SDF every vertex of G is assigned
1. Hence γs(G) = γ−r (G) = n. On the other hand, let γs(G) = γ−r (G) = n. By
Theorem 2.3, γs(G) = n if and only if every vertex of G is either endvertex or
support vertex. For any graph G other than Kc

n, where every vertex of G is either
endvertex or support vertex, we get a contradiction. Hence the result.

Theorem 3.10. Let G be a graph with n ≥ 6 vertices. If | V1 |=| V−1 |, then

γ−r (G) = γs(G).

Proof. By Theorem 3.4 and Theorem 2.2, the desired result follows.
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Open Problem: For which class of graphs G is

1. γ−r (G) = γ(G).

2. γ−r (G) = γ−(G).

3. γ−r (G) = γs(G).
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