South East Asian J. of Mathematics and Mathematical Sciences Vol. 16, No. 2 (2020), pp. 289-296

ISSN (Online): 2582-0850

ISSN (Print): 0972-7752

RESTRICTED MINUS DOMINATION NUMBER OF A GRAPH

B. Chaluvaraju and V. Chaitra*

Department of Mathematics, Jnana Bharathi Campus, Bangalore University, Bangalore - 560056 INDIA

E-mail : bchaluvaraju@gmail.com

*Department of Mathematics, B.M.S. College of Engineering, Bull Temple Road, Bangalore - 560001, INDIA

E-mail : chaitrav.maths@bmsce.ac.in

(Received: Feb. 25, 2020 Accepted: Jul. 27, 2020 Published: Aug. 30, 2020)

Abstract: A restricted minus dominating function on a graph G = (V, E) is a function $f : V \to \{-1, 0, 1\}$ such that $f(N[v]) \ge 0$ for every vertex $v \in V$ and a vertex assigned 0 is adjacent to at least one vertex assigned 1. The restricted minus domination number $\gamma_r^-(G) = \min\{w(f) : f \text{ is restricted minus dominating function}\}$. In this paper, we initiate the study of $\gamma_r^-(G)$ and its relationship with sign and minus domination are investigated. Many of the known bounds of $\gamma_r^-(G)$ are immediate consequence of our results.

Keywords and Phrases: Graph, domination number, minus domination number, restricted minus domination.

2010 Mathematics Subject Classification: 05C69, 05C70.

1. Introduction

All graphs considered in this paper are finite, simple, and undirected. For a general reference on graph theory, the reader is directed to [8]. Let G be a graph with vertex set V(G) and edge set E(G). Let n = |V| and m = |E| denote the number of vertices and edges of a graph G, respectively. For any vertex v

of G, let N(v) and N[v] denote its open and closed neighborhoods respectively. $\alpha_0(G)(\alpha_1(G))$, is the minimum number of vertices (edges) in a vertex (edge) cover of G. $\beta_0(G)(\beta_1(G))$, is the minimum number of vertices (edges) in a maximal independent set of vertex (edge) of G. Let deg(v) be the degree of a vertex v in G, $\Delta(G)$ and $\delta(G)$ be maximum and minimum degree of vertices of G, respectively. The complement G^c of a graph G is the graph having the same set of vertices as Gdenoted by V^c and in which two vertices are adjacent, if and only if they are not adjacent in G. A tree T is an acyclic connected graph.

A dominating set $D \subseteq V$ for a graph G is such that each $v \in V$ is either in D or adjacent to a vertex of D. The domination number $\gamma(G)$ is the minimum cardinality of a dominating set of G. For complete review on domination and its related parameters, refer [1], [9] and [10].

For any real valued function $f: V \to R$ the weight of f is denoted and defined as $w(f) = \sum_{v \in V} f(v)$.

A sign dominating function (SDF) of a graph G is a function $f: V \to \{-1, 1\}$ such that $f(N[v]) \ge 1$ for all $v \in V$. The sign domination number of a graph G is $\gamma_s(G) = min\{w(f) : f \text{ is sign dominating function}\}$. For more details on sign domination, we refer [3] and [14].

A minus dominating function (MDF) of a graph G is a function $g: V \to \{-1, 0, 1\}$ such that $g(N[v]) \ge 1$ for all $v \in V$. The minus domination number of a graph G is $\gamma^{-}(G) = min\{w(g) : g \text{ is minus dominating function}\}$. For more details on minus domination, we refer [2], [5], [7], [11], [12] and [13].

A restricted minus dominating function (RMDF) on a graph G is a function $f: V \to \{-1, 0, 1\}$ such that $f(N[v]) \ge 0$ for every vertex $v \in V$ and a vertex assigned 0 is adjacent to at least one vertex assigned 1. The restricted minus domination number $\gamma_r^-(G) = \min\{w(f) : f \text{ is restricted minus dominating function}\}$. Let $|V_{-1}|$, $|V_0|$ and $|V_1|$ denote number of vertices assigned -1, 0 and 1 respectively.

2. Existing Result

Theorem 2.1. [4] For any tree T, $\gamma^{-}(T) \geq 1$ with equality if and only if $T \cong K_{1,n-1}$.

Theorem 2.2. [6] Let G be a graph with n vertices. If $\gamma_s(G) = 0$, then $n \ge 6$.

Theorem 2.3. [6] For any graph G, $\gamma_s(G) = n$ if any only if every non isolated vertex is either an endvertex or adjacent to an endvertex.

3. Results

We start with the couple of observations, which we use in sequel.

Observation 3.1. A vertex which is assigned -1 is always adjacent to at least one

vertex assigned 1.

Proof. Since weight of every vertex of a graph G should not be negative it implies every vertex $v \in V$ which is assigned -1 should be adjacent to at least one vertex assigned 1 such that $f(N[v]) \ge 0$.

Observation 3.2. By the definitions of $\alpha_o(G)$, $\alpha_1(G)$, $\beta_o(G)$ and $\beta_1(G)$, Clearly, $\gamma_r^-(G) < \min\{\alpha_o(G), \alpha_1(G), \beta_o(G), \beta_1(G)\}.$

Theorem 3.1. For any path P_n with $n \ge 1$ and Cycle C_n with $n \ge 3$ vertices,

$$\gamma_r^-(P_n) = \gamma_r^-(C_n) = \begin{cases} 1 & \text{if } n = 3k+1, \\ 0 & \text{otherwise,} \end{cases}$$

where k is a positive integer.

Proof. The result can be easily checked for n = 1 and 2. We shall prove the result for $n \ge 3$ vertices. For any positive integer k, if there are 3k-vertices, then -1, 1, 0 is assigned k-times. Hence $\gamma_r^-(G) = 0$. If there are (3k + 1)-vertices, then as usual 3k-vertices are assigned -1, 1, 0 in order. Since the last vertex among 3k-vertices is assigned 0 and $(3k + 1)^{th}$ vertex say v can neither be assigned 0 as it will not be adjacent to 1 nor -1 as f(N[v]) = -1. Hence it should be assigned 1. For such assignment $\gamma_r^-(G) = 1$. If there are (3k + 2)-vertices, then -1, 1, 0 are assigned to 3k-vertices in order. $(3k + 1)^{th}$ vertex is assigned 1 and $(3k + 2)^{nd}$ vertex can be assigned either 0 or -1. Since the restricted minus domination number of G is minimum of such assignments, we assign -1 to the last vertex. Hence $\gamma_r^-(G) = |V_1| - |V_{-1}| = 0$.

Theorem 3.2. For any complete bipartite graph $K_{p,q}$ with bipartitions $|P_1| = p$ and $|P_2| = q$,

$$\gamma_r^-(K_{p,q}) = 1.$$

Proof. Let $f: V \to \{-1, 0, 1\}$ be a restricted minus dominating function.

Case 1. If the number of vertices assigned 1 is equal to number of vertices assigned -1, then for any vertex $v \in V_{-1}$, f(N[v]) < 0.

Case 2. If the number of vertices assigned 1 is less than the number of vertices assigned -1 then there is at least one vertex $v \in V$ such that f(N[v]) < 0.

From the above two cases $\gamma_r^-(K_{p,q}) > 0$ and $|V_1| > |V_{-1}|$.

If $|V_1| = |V_{-1}| + 1$ then f(N[v]) > 0 for all $v \in V$. Hence $\gamma_r^-(K_{p,q}) = 1$. Thus $\gamma_r^-(G) = 1$.

To prove our next result, we make use of the following definition:

A graph G is outerplanar if it has a crossing-free embedding in the plane such that all vertices are on the same face.

Theorem 3.3. For any positive integer k, there exist an outerplanar graph G with $\gamma_r^-(G_k) \leq -k$.

Proof. Consider the outerplanar graph G_k which can be constructed as in Figure 1. Then there are (3k + 3)-vertices out of which (2k + 2) vertices are of degree 1. By assigning -1 to 2k vertices of degree 1, 1 to k vertices of degree 5 and 0 to remaining vertices produces RMDF f of G_k of weight k - 2k = -k as illustrated. This implies that the restricted minus domination number $\gamma_r^-(G) \leq -k$.

Figure-1: An outerplanar graph G_k with $\gamma_r^-(G_k) \leq -k$

Theorem 3.4. For any connected graph G, $\gamma_r^-(G) = 0$ if and only if $|V_1| = |V_{-1}|$. **Proof.** As vertices assigned 0 is adjacent to at least one vertex assigned 1, implies that V_1 dominates vertices of V_0 . Hence $\gamma_r^-(G) = |V_1| - |V_{-1}|$. Suppose $|V_1| = |V_{-1}|$. This implies that $\gamma_r^-(G) = 0$. On the other hand, if $\gamma_r^-(G) = 0$, then $|V_1| - |V_{-1}| = 0$.

Theorem 3.5. Let G be a nontrivial graph with $\triangle(G) = n - 1$. Then

(*i*)
$$\gamma_r^-(G) = 0.$$

(ii) $\gamma_r^-(G) \leq \gamma_r^-(G^c)$.

Proof. Let G be a nontrivial graph with n-vertices.

(i) Let v be a vertex of degree n-1. If we assign 1 to vertex v, assign -1 to a vertex adjacent to v and remaining (n-2)-vertices are assigned 0, then such an assignment satisfies both the conditions RMDF. Hence $\gamma_r^-(G) = 0$. (ii) If G is a graph with $\Delta(G) = n-1$, then by (i), $\gamma_r^-(G) = 0$. Also, the graph G^c is a disconnected graph, this implies that $\gamma_r^-(G) \leq \gamma_r^-(G^c)$. **Theorem 3.6.** For any connected graph G,

$$\gamma_r^-(G) \le \gamma(G).$$

Proof. Let $f: V \to \{0, 1\}$ be a dominating function and $g: V \to \{-1, 0, 1\}$ be RMDF on a graph G. Then $f(N[v]) \ge 1$ and $g(N[v]) \ge 0$ for every $v \in V$. As $\gamma(G) \ge 1$ and due to the fact of the Theorem 3.3, the result follows.

Theorem 3.7. For any nontrivial graph G, $\gamma_r^-(G) \leq n - \Delta(G)$. Further, the bound is attained if the graph G is totally disconnected.

Proof. Let G be a graph with *n*-vertices. Then, we consider the following cases:

Case 1. If $\Delta(G) = 0$, then $G \cong K_n^c$ and $n - \Delta(G) = n$. We have $\gamma_r^-(G) = n$.

Case 2. If $\Delta(G) = 1$, then $G \cong K_2$ and $n - \Delta(G) = 1$. Here, one vertex is assigned 1 and other vertex is assigned -1. Then $\gamma_r^-(G) = 0$.

Case 3. If $\Delta(G) = n - 1$, then $n - \Delta(G) = 1$. Then by Theorem 3.5, $\gamma_r^-(G) = 0$. **Case 4.** If $\Delta(G) = k$ other than above considerations, then $n - \Delta(G) = n - k > 1$. We have $\gamma_r^-(G) < n - k$.

Hence, from all the above cases the result is proven.

Theorem 3.8. For any tree T,

$$\gamma_r^-(T) \le \gamma^-(T).$$

Proof. Let T be a tree. Then by Theorem 2.1, $\gamma^{-}(T) \geq 1$ and by Theorem 3.3, we have $\gamma_{r}^{-}(T) \leq \gamma^{-}(T)$.

There is no good relation between $\gamma_r^-(G)$ and $\gamma^-(G)$ except for tree. For illustration, consider the graphs G_1 , G_2 and G_3 .

Figure-2 Graphs with $\gamma^{-}(G_1)$ and $\gamma^{-}_{r}(G_1)$.

Figure-3 Graphs with $\gamma^{-}(G_2)$ and $\gamma^{-}_{r}(G_2)$.

Figure-4 Graphs with $\gamma_r^-(G_3)$ and $\gamma^-(G_3)$.

In Figure 2, we have $\gamma^-(G_1) < \gamma_r^-(G_1)$. In Figure 3, we have $\gamma_r^-(G_2) = \gamma^-(G_2)$. In Figure 4, we have $\gamma^-(G_3) > \gamma_r^-(G_3)$.

Theorem 3.9. Let G be a graph with $n \ge 1$ vertices. Then $\gamma_s(G) = \gamma_r^-(G) = n$ if and only if $G \cong K_n^c$. **Proof.** Let $G \cong K_n^c$. Then, under RMDF and SDF every vertex of G is assigned 1. Hence $\gamma_s(G) = \gamma_r^-(G) = n$. On the other hand, let $\gamma_s(G) = \gamma_r^-(G) = n$. By

Theorem 2.3, $\gamma_s(G) = n$ if and only if every vertex of G is either endvertex or support vertex. For any graph G other than K_n^c , where every vertex of G is either endvertex or support vertex, we get a contradiction. Hence the result.

Theorem 3.10. Let G be a graph with $n \ge 6$ vertices. If $|V_1| = |V_{-1}|$, then

$$\gamma_r^-(G) = \gamma_s(G).$$

Proof. By Theorem 3.4 and Theorem 2.2, the desired result follows.

Open Problem: For which class of graphs G is

1.
$$\gamma_r^-(G) = \gamma(G)$$
.

2.
$$\gamma_r^-(G) = \gamma^-(G)$$
.

3.
$$\gamma_r^-(G) = \gamma_s(G)$$
.

4. Acknowledgments

The authors would like to express their gratitude to refere for his/her careful reading and helpful comments.

References

- B. D. Acharya, H. B. Walikar and E. Sampathkumar, Recent developments in the theory of domination in graphs, Mehta Research instutute, Allahabad, MRI Lecture Notes in Math., 1(1979).
- [2] B. Chaluvaraju and V. Chaitra, Affirmative domination in graphs, Palestine Journal of Mathematics, 5(1) (2016), 6-11.
- [3] B. Chaluvaraju and V. Chaitra, Sign domination in arithmetic graphs, Gulf Journal of Mathematics, 4(3)(2016), 49-54.
- [4] J. Dunbar, S. Hedetniemi, M. A. Henning and Alice McRae, Minus domination in regular graphs, Discrete Mathematics, 149(1996), 311-312.
- [5] J. Dunbar, S. Hedetniemi, M. A. Henning and A. McRae, Minus domination in graphs, Discrete Mathematics, 199(1-3)(1999), 35-47.
- [6] J. Dunbar, S. Hedetniemi, M. A. Henning and P. J. Slater, Signed domination in graphs, Graph Theory, Combinatorics and Applications, Proceedings 7th Internat. Conf. Combinatorics, Graph Theory, Applications, (1995), 311-322.
- [7] N. Dehgardi, The Minus k-domination numbers in a graphs, Communication in Combinatorics and Optimization, 1(1)(2016), 14-27.
- [8] F. Harary, Graph theory, Addison-Wesley, Reading Mass (1969).
- [9] T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Fundamentals of domination in graphs, Marcel Dekker, Inc., New York (1998).

- [10] T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Domination in graphs: Advanced topics, Marcel Dekker, Inc., New York (1998).
- [11] L. Y. Kang, H. K. Kim and M. Y. Sohn, Minus domination number in kpartite graphs, Discrete Math., 227(2004), 295-300.
- [12] Peter Damaschke, Minus domination in small degree graph, Discrete Appl Maths., 108(2001), 53-64.
- [13] Yaojun Chen, T. C. Edwin Cheng, C.T. Ng and Erfang Shan, A note on domination and Minus domination numbers in cubic graphs, Applied Mathematics, (2005), 1062-1067.
- [14] B. Zelinka, Signed and minus domination in bipartite graphs, Czech. Math. J., 56(131)(2006), 587-590.